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Improved Iterative Decoding of Parallel and Serially
Concatenated Trellis Coded Modulation
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Abstract

For parallel and serially concatenated trellis coded modulation (TCM), improved iterative decoding schemes with

a simple mechanism are proposed and their performances are compared with those of conventional decoding

schemes. Simulation results have shown that the proposed schemes have provided a considerable decoding gain in

additive white Gaussian noise (AWGN) channels and Rayleigh fading channels, even if they can be implemented

by a simple modification of conventional decoding algorithms.

요 약

본 논문에서는, 병렬 혹은 직렬적으로 연접된 트렐리스 부호화 변조 기법 (Trellis coded modulation: TCM)을 위

한 간단한 구조를 가진 향상된 반복적 복호 기법들이 제안되며, 동시에 제안된 기법들의 성능을 기존 기법들과 비

교 제시한다. 제안된 복호 알고리즘은 기존 알고리즘의 단순 변형을 통해서 구현될 수 있음에도 불구하고, 모의

실험 결과는 제안된 기법들이 부가 백색 가우스 잡음 채널 (Additive white Gaussian noise channel: AWGN

channel) 및 레일리 (Rayleigh) 페이딩 채널 상에서 상당한 부호 이득을 제공함을 보여 준다.
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Ⅰ. Intorduction

As the near-capacity gains claimed for parallel

concatenated convolutional codes (PCCC's), what

are called as Turbo codes, and serially

concatenated convolutional codes (SCCC's) have

been confirmed and widely reported in the

literature, the range of applications of PCCC's and

SCCC's has expanded to many areas of

communications. Especially, it is interesting to

combine PCCC's or SCCC's with a

bandwidth-efficient modulation in order to improve

the transmission spectral efficiency. Many papers

have shown the good results of applying PCCC's

or SCCC's to trellis-coded modulation (TCM) [1,

2].

In this paper, we propose the enhanced iterative

decoding schemes for parallel and serially

concatenated trellis coded modulation (PC-TCM

and SC-TCM) with an interleaver between an

encoder and a modulator. By the soft or hard

decision feedback according to the new iterative

decoding algorithm, the proposed schemes use the

sequences of probability distributions that have not
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been used in conventional decoding schemes. Note

that in conventional schemes, a Turbo decoder and

a TCM decoder are mutually exclusive and,

therefore, independently operated.

Ⅱ. Iterative Decoding Algorithm of
SC-TCM and PC-TCM

We consider the association of M-state QAM

(Quadrature Amplitude Modulation) or PSK (Phase

Shift Keying) modulation and encoder built from a

standard SCCC by using puncturing technique as

depicted in Fig. 1. By using two puncturing

functions, it is possible to obtain a large code

family, with various code rates. In order to obtain

symbols affected with uncorrelated noises at the

SCCC-decoder input and to randomize the data

prior to modulation to limit the peak to average

ratio of the envelope of the modulated waveform, a

bit interleaver π1 has to be inserted between the

SCCC-encoder and the modulator.

For 2
Z
-ary modulation, every Z interleaved bits

are grouped together to form a channel symbol

   

 

  (1)

at time t and mapped to a complex symbol Xt=τ

(Vt). Consider a coherent demodulator, the received

signal is

     (2)

where ρt is a Rayleigh fading channel amplitude

and a constant equal to 1 for a Gaussian channel,

and nt is a complex Gaussian random variable.

A functional diagram of the new iterative

decoding algorithm for SC-TCM is presented in

Fig. 2. This schemeis similar to conventional

SCCC-decoders using the soft-input soft-output

(SISO) module [3], except that the output

probability of SISO Inner P(CI: O), which has not

been used in conventional SCCC-decoders, is

iteratively fed back through B-Module. Note that

the interleaved coded modulation concept originally

proposed by Zehavi [4] is applied to B-Module.
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Fig. 2. Iterative decoding scheme for SC-TCM

1. Algorithm Using Soft Decision Value

The decoding steps are as follows. For each

received signal Yt, Bit-to-Bit metric Calculator

(BBC) using soft-decision feedback calculates the

probabilities
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f(Xt, j)∊{1, 0} is the value of the j-th bit of the

label for Xt. The initial value of P(vt
j
; I)—prior to

any decoding—is assumed to be constant for all i.

Note that the probability P(Xt) is assumed to be

equal for any Xt∊χ(i, a) in the first decoding step.

2. Algorithm Using Hard Decision Value

For each received signal Yt, BBC using

hard-decision feedback calculates the probabilities
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where




is the previous iterative decoding

decision.

The probability P(vt
j; O) calculated by (3) or (5)

is deinterleaved and used by a conventional

SCCC-decoder using the SISO algorithm [3]. Then,

P(CI; O) is interleaved and fed back for the next

iteration.

3. Computation of Input and Output Bit
Computation

In this subsection, the operation of the metric

converters shown in Fig. 2 is described. Consider a

rate ko/no trellis encoder such that each input

symbol U consists of ko bits and each output

symbol C consists of no bits.

Bit-to-symbol metric converter calculates the

symbol probabilities
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where c
j

denotes the value of the j-th bit of the

coded symbol Ck=c; j=1,…,no and u
j

denotes the

value of the j-th bit of the input symbol Uk=u; j=

1,…,ko.

Symbol-to-bit metric converter calculates the bit

probabilities
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where  and   are normalization constants

such that
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4. Description for PC-TCM

We consider the association of 2
Z
-ary QAM or

PSK modulation and encoder built from a standard

PCCC by using puncturing technique as depicted in

Fig. 3. In order to obtain symbols affected with

uncorrelated noises at the decoder input and to

randomize the data prior to modulation to limit the

peak to average ratio of the envelope of the

modulated waveform, a random interleaver π1 is

inserted between the encoder and the modulator.

The new iterative decoding scheme for PC-TCM

is presented in Fig. 4, where B-to-S indicates

bit-to-symbol metric converters. Each SISO module

is a four-port device that accepts at the input the

sequences of probability distributions {P(C; I), P(U;

I)} and outputs the sequences of probability

distributions {P(C; O), P(U; O)} [3]. The proposed

schemes are identical with conventional decoder

schemes using the SISO module. However, there is

one important difference. In these schemes, the

sequences of probability distributions {P(C1; O),
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P(C2; O), P(CI; O)} that have not been utilized in

conventional PCCC-decoder and SCCC-decoder are

iteratively fed back by B-Module. These sequences

can be iteratively fed back without amplification of

self-information because the interleaver π1 is

inserted between the encoder and the modulator.

The decoding steps using hard decision values

are as follows. For each received signal Yt, BBC

with hard-decision feedback calculates the

probabilities defined by Eq. (5). In Eq. (6), f(Xt, j)

∊{1, 0} is the value of the j-th bit of the label for

Xt and




is the previous iterative decoding

decision. The probability P(Xt) is assumed to be

equal for any Xt∊χ(i, a) in the first decoding step.

Finally, the probability P(vt
i; O) calculated by Eq.

(3) is deinterleaved and used by a conventional

PCCC or SCCC decoder using the SISO algorithm

[3]. Then, {P(C1; O), P(C2; O)} generated by the

SISO modules are interleaved and fed back into

BBC for the next iteration.
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III. Experimental Results and Discussion

1. Performance of SC-TCM

To show the performance of the SC-TCM

decoded using the new algorithm, we have

simulated a rate R=1/3 SCCC and 8PSK

modulation, joined by a random interleaver π1. To

achieve the best performance, the gray mapping

(see Fig. 5) and soft-decision feedback are used.
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modulation

The SCCC is formed by an outer code with rate

2/3 obtained by puncturing a systematic, recursive,

rate 1/2 convolutional code with generating matrix
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(the rate 2/3 is obtained by puncturing every other

parity-check bit), and an inner code consisting of a

rate 1/2 systematic recursive convolutional code

with the same previous generating matrix, joined

by a random interleaver π2.

We have computed the bit error rate (BER)

using the Monte Carlo method as a function of

Eb/No. In Figs. 6-8, the results over Gaussian

channels are plotted for information block length

318, 596, and 700. In these figures, [BI-On,

FB-On], [BI-On, FB-Off], and [BI-Off, FB-off]

means the proposal method (π1 is used in Fig. 1

and the proposed feedback is also used), the

conventional method-A (π1 is used and the

proposed feedback is not used), and the

conventional method-B (π1 is not used and the

proposed feedback is not used), respectively. Also,

BI, FB and IT mean bit-interleaver, feedback,

iteration number, respectively.

Fig. 9 shows that BER comparison between

SCCC-TCM and the 64-state TCM by Ungerboeck
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under additive white Gaussian noise (AWGN)

channel.

We have also simulated rates R=1/4 and 1/4

SCCC and 8PSK modulation as shown in Fig. 10.

In this case, the SCCC is formed by an outer code

that is the systematic, recursive, rate 1/2

convolutional code with generating matrix Eq. (13),

and an inner code consisting of a rate 1/2

systematic recursive convolutional code with the

same previous generating matrix, joined by a

random interleaver (π2).
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Fig. 6. BER and FER Comparison for SCCC-TCM under

AWGN Channel. Data Block Size: 318, Overall

Code Rate: 1/3
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Fig. 9. BER Comparison for SCCC-TCM under AWGN

channel. Overall Code Rate: 1/3. (i) Proposal

[BI-On, FB-ON], (ii) Conventional-A [BI-On,

FB-Off], (iii) Conventional-B [BI-Off, FB-Off], (iv)

Conventional TCM (64-State)

The performance comparison over a Rayleigh

fading channels is also presented in Fig. 11. From

this figure, we can see that over a Rayleigh

channel, the interleaver π1 is necessary to achieve

the best performance.

2. Performance of PC-TCM

To show the performance of the proposed

PC-TCM schemes, we have simulated a rate 1/3

PCCC with 8-PSK modulation and a random

interleaver π1. To achieve the best performance, the

gray mapping and the soft-decision feedback are
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also used. Two equal 8-state rate 1/2 recursive

systematic convolutional codes are used to form the

PCCC and their generating matrix is

   
    . (14)

We have computed the bit error rate (BER) and

the frame error rate (FER) using the Monte Carlo

method as a function of Eb/No. The results over

AWGN channels are plotted in Fig. 12: (i) the

proposal; (ii) the conventional-A (π1 is used and
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B-Module is not used); (iii) the conventional-B

(Both π1 and B-Module are not used). For (i)-(iii),

ten decoding iterations are performed.

As shown in Fig. 12, the proposed schemes

achieve better performance. On AWGN channels,

the proposed algorithm outperforms the

conventional-A by 0.2-0.4 dB and the

conventional-B by 0.1-0.2 dB at the BER of 10-5

and at the FER of 10-4.

IV. Conclusion

In this paper, we considered the enhanced

iterative decoding schemes for parallel and serially

concatenated trellis coded modulation. Through the

simulation results over AWGN channels and

Rayleigh fading channels, it has been found that

the proposed schemes have outperformed the

conventional Turbo decoding schemes. The high

performance of the proposed schemes is essentially

due to the fact that the extrinsic information not
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used in previous schemes is additionally utilized by

feedback.
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